
Tutorial 3 – Creating a fork and two branches: a pipeline to process chromatogram files
followed by two distinct pipelines for DNA assembly

Introduction

 In this tutorial we will describe the specification of three distinct pipelines. The first one,
described by the configuration file trace_file_to_xml.cnf, processes raw chromatogram
files, similarly to what was seen in Tutorial 1. However, instead of assembling the sequences, it
will stop at step 15, creating a snapshot of all the processing steps that have been performed
along the pipeline. The component outsave.pl will generate a flatfile database
(final_snapshot.xml) that will be used to feed two other distinct pipelines, using the
upload_xml.pl component. The result will be the same as continuing the processing from the
step 15, where the snapshot has been generated. This will be an example on how we can
implement forks in a pipeline. Configuration files xml_cap3.cnf and xml_phrap.cnf will
specify pipelines that represent the “branches” of the fork. These pipelines will upload the
final_snapshot.xml file and submit it to the steps 16 to 18, described in Tutorial 1. The
exception is that the pipeline specified by the configuration file xml_phrap.cnf will perform
the assembly using the program Phrap instead of CAP3. For this task, a new component will be
used, named assembly_phrap.pl. In this way, using different pipeline branches, we can
compare the results of two distinct assembly programs.

The following steps constitute the pipe specified by the file trace_file_to_xml.cnf:

1. Uploading trace files and performing base calling and quality evaluation;
2. Masking primer sequences;
3. Masking vector sequences;
4. Filtering low quality sequences;
5. Saving sequences invalidated by the quality filter;
6. Trimming the bases that present a low Phred quality value and those that are masked;
7. Filtering sequences considered too small;
8. Saving sequences invalidated by the size filter;
9. Filtering mitochondrial sequences;
10. Saving sequences invalidated by the contaminant filter;
11. Filtering ribosomal sequences;
12. Saving sequences invalidated by the contaminant filter;
13. Saving sequences not previously invalidated by any filter;
14. Generating a report of all filtering steps;
15. Creating an XML snapshot recording all the processing steps that were performed;

The steps below constitute the pipe specified by the file xml_cap3.cnf:

16a. Uploading an XML file created by a previous pipeline;
17a. Assembling the valid sequences using CAP3;
18a. Generating an HTML page with graphical reports;
19a. Generating a complete graphical report.

The steps below constitute the pipe specified by the file xml_phrap.cnf:

16b. Uploading an XML file created by a previous pipeline;
17b. Assembling the valid sequences using Phrap;
18b. Generating an HTML page with graphical reports;
19b. Generating a complete graphical report.

We have previously constructed the pipelines for this tutorial using CoEd, EGene’s graphical
configuration editor. The EGene’s configuration files (trace_file_to_xml.gen,
xml_cap3.gen and xml_cap3.gen) and their counterpart text files
(trace_file_to_xml.cnf, xml_cap3.cnf and xml_cap3.cnf) can be found at the
config_files directory. In order to run the pipelines, go to the /examples/xml_pipe
directory. This directory contains the subdirectory chromat_dir, which presents a set of trace
files, and the file primer_table.txt, composed by a list of the primers used in the
sequencing.

To run the first pipeline, you should type the following command:

bigou.pl -c ../config_files/trace_file_to_xml.cnf

If everything goes well, you should now find the following additional files in this directory:

filtered_by_quality.fasta
filtered_by_size.fasta
filtered_by_mitochondria.fasta
filtered_by_ribosome.fasta
good_sequences.fasta
filtering_report.html
final_snapshot.xml

Now run the second pipeline that will perform assembly with CAP3. Type the following

command:

bigou.pl –c ../config_files/xml_cap3.cnf

If everything goes well, you should now find the following additional files in this directory:

redundancy_report_cap3.html
report_graphic_simple_cap3.html

and the following additional directories:

assembly_cap3_dir/
complete_report_cap3/
images_cap3_dir/

Finally, run the third pipeline that will perform assembly with Phrap. Type the following

command:

bigou.pl –c ../config_files/xml_phrap.cnf

If everything goes well, you should now find the following additional files in this directory:

redundancy_report_phrap.html
report_graphic_simple_phrap.html

and the following additional directories:

assembly_phrap_dir/
complete_report_phrap/
images_phrap_dir/

The first pipeline, specified by the configuration file trace_file_to_xml.cnf, is
identical to the steps 1 to 18 already seen in Tutorial 1 and will not be commented here. The last
step (15) creates a snapshot recording all the processing steps that were performed. This file can
be used as an input in subsequent pipeline, as we will see below.

The second pipeline, specified by the configuration file xml_cap3.cnf, contains the

following steps:

16a. Uploading an XML file created by a previous pipeline

Configuration parameters in the .cnf file:

#===
PHASE=Upload XML
program = upload_xml.pl
#---
xml_file = final_snapshot.xml
#===

This step uses the component upload_xml.pl to upload an XML file created by a
previous pipeline, and located at the directory specified by the user. The only argument to this
component is the name of this XML file (in our case final_snapshot.xml). It is assumed
that bigou.pl is run while the shell is in the directory that contains the file
final_snapshot.xml. Alternatively, the user can specify a complete path for the file (e.g.
/home/test/final_snapshot.xml).

17a. Assembling the valid sequences

Configuration parameters in the .cnf file:

#===
PHASE=Assembly
program = assemble_cap3.pl
#---
prefixName = clean
assemble_base_dir = assembly_cap3_dir
chromatDirBase = chromat_dir
assemble_phds = /dev/null
report_file = redundancy_report_cap3.html
#===

In this step, we will assemble the valid sequences using the program CAP3. The component

that performs this task is assemble_cap3.pl. The component assemble_cap3.pl does not
alter any sequence, but rather generates new files. The parameters were already discussed in
Tutorial 1 and will not be commented here. At the same way the other steps of this pipeline,
which were already introduced in Tutorial 1, will not be covered here.

The third pipeline, specified by the configuration file xml_phrap.cnf, contains the

following steps:

16b. Uploading an XML file created by a previous pipeline

Configuration parameters in the .cnf file:

#===
PHASE=Upload XML
program = upload_xml.pl
#---
xml_file = final_snapshot.xml
#===

This step is identical to step 16b, discussed above. It will permit the upload of an XML file
created by the previous pipeline.

17b. Assembling the valid sequences

Configuration parameters in the .cnf file:

#===
PHASE=Assembly
program = assemble_phrap.pl
#---
prefixName = clean
assemble_base_dir = assembly_phrap_dir
chromatDirBase = ./chromat_dir
assemble_phds = /dev/null
report_file = redundancy_report_phrap.html
#===

In this step, we will assemble the valid sequences using the program Phrap. The component
that performs this task is assemble_phrap.pl. The component assemble_phrap.pl does
not alter any sequence, but rather generates new files. The parameters are identical to those used
for the componente assemble_phrap.pl. They were already discussed in Tutorial 1 and
will not be commented here. At the same way the other steps of this pipeline, which were
already introduced in Tutorial 1, will not be covered here.

If you followed this tutorial without problems, you should now be able to compare the
assemblies performed by both CAP3 and Phrap programs. They can be accessed in the
subdirectories assembly_cap3_dir and assembly_phrap_dir, respectively.

© Copyright 2004: Alan M. Durham and Arthur Gruber

