
HOWTO - Developing new components

Developing new components to the pipeline is not a difficult task, but a protocol
has to be followed. First, all parameters for executing the component should be placed
in a configuration file, no command line parameters are allowed, and the component
should follow a specific calling protocol. Second, all sequence input, output and
manipulation should be performed using the interface of the SequenceObject Perl
modules. This document provides some documentation on how to write new EGene
components. If you are interested in developing new components, please contact the
authors.

Calling protocol

All components are called using the command line below:

<component_name> --conf=<configuration file name>

The component should NOT put any data in the standard output, as STDOUT is

used for communication between components. You are free to use the STDERR.

The configuration file lines should have the following format:

<parameter_name> = <parameter_value>

To make things easier for the end user, you should let the order of the

parameters be free.

To facilitate the creation of Perl components following the configuration file and

calling protocol conventions, we provide a small Perl script,
generate_perl_header.pl. This script reads a specification that should contain all
the parameters of configuration files of the target component, and produces a "skeleton"
Perl program that works in the required manner (including the command line format and
order-free parameter reading). A sample input for this component would be:

==file_name
==path
user_id=
protocol="html"

Each line of the specification above describes an entry in the configuration files
of the component. Mandatory arguments should be preceded by a double equal sign
("=="), optional arguments should be followed by one equal sign ("="), and,
eventually, a default value. The skeleton generated for the input above will expect
configuration files with two mandatory arguments (file_name and path), and two
optional arguments (user_id and protocol). The protocol argument, if not
specified, is always "html". No typing is enforced on the parameters.

The code specified in the skeleton program opens the configuration file, checks

if the mandatory arguments are present (aborting otherwise), and fills local variables
with the values specified in the configuration files. The local variables have the same
name as the corresponding configuration arguments (e.g. $protocol, $file_name,
$path,$user_id).

The auxiliary program, called generate_perl_header.pl, reads input from
STDIN and outputs the results into STDOUT. It can be downloaded from EGene’s web
site (http://www.lbm.fmvz.usp.br/egene). We list below the result of running
generate_perl_header.pl to the input above.

#--
#!/usr/bin/perl
use strict;
use Getopt::Long;
use EGene::SequenceObject;
#mandatory fields
my $file_name;
my $path;
#optional arguments and configuration defaults
my $user_id;
my $protocol="html";
#local variables
my @arguments;
my %config;
my $configFile;
my $missingArgument=0;
my $conf;
#read configuration file
GetOptions ("conf=s" => \$conf);
open(CONFIG, "< $conf") or die("missing configuration file
$configFile\n");
my $configLine;
while ($configLine = <CONFIG>)
 $configLine =~ s/^\s+//;
 $configLine =~ s/\s+\Z//;
 $configLine =~ s/\s+\=/\=/;
 $configLine =~ s/\=\s+/\=/;
 if ($configLine =~ /^\#/ || !($configLine =~ /(.)\=(.)/))
 next;
 }
 chomp $configLine;
 @arguments = split("=", $configLine);
 $config$arguments[0]}=$arguments[1];
}

close(CONFIG);
#now check if any mandatory argument is missing
 if (!exists($config"file_name"}))
 $missingArgument = 1;
 print "Missing mandatory configuration
argument:file_name\n";
 }
 else $file_name = $config"file_name"}};
 if (!exists($config"path"}))
 $missingArgument = 1;
 print "Missing mandatory configuration
argument:path\n";
 }
 else $path = $config"path"}};

http://www.lbm.fmvz.usp.br/egene

if ($missingArgument)
 die "\n\nCannot run program, mandatory configuration
argument missing (see above)\
"
}
#set optional arguments that were declared in configuration
file
 if (defined($config"user_id"}))
 $user_id = $config"user_id"};
 }
 if (defined($config"protocol"}))
 $protocol = $config"protocol"};
 }
#--

Internal structure of components

To ensure the component works in a pipeline manner, abstracting, input and
output format, the following loop skeleton should be used:

my $sequence_object = new SequenceObject;
while ($sequence_object->read())
...process data...
...update sequence data...
$sequence_object->print();
}
...clean up temporary files and directories...

The script can freely manipulate data internally, however, to record results that
should be stored in the sequence representation the interface specified in
SequenceObject.pm must be used. Sequences are stored with a record of all
operations performed on them. The interface allows the components also to record all
programs that were applied to each sequence. These runs are recorded as logs. Logs and
operations can be used later to build reports.

SequenceObject interface

SequenceObject plays an essential role in the portability of representations.
You should not modify it on your own at the risk of incompatibility with future versions
of EGene. If you need to enrich the interface, you should first contact the authors.

NOTE: the interface soon will be greatly expanded to include annotation
information

Currently the interface includes the following functions:
initialize_from_xml – receives an XML string and initializes the object.
initialize_from_phd – receives a PHD representation in a string and initializes
the object.
xml_string – returns a string with the XML representation of the object.
phd_string – returns a string with the PHD representation of the string.

masked_sequence – returns a string with all the bases of the sequence, where
masked bases are substituted for “X”.
current_sequence – returns a string with the bases of the sequence after trimming.
sequence – returns a string with all the original bases of the sequence.
current_qual_vector – returns a vector with the quality values of the current
sequence.
qual_vector - returns a vector with all quality values of the original sequence.
location_vector - returns all the location values that were present in the PHD
original file, if it is the case.
file_name_header – returns a string identifying the sequence that can be used as a
file name (no spaces).
print – sends the sequence data to the output.
read – reads sequence data from the pipeline.
sequence_name – returns a string with the name of the sequence.
log - creates a log entry in the sequence. This function is used by components to
record data about the processing, as parameters used and date. This function receives
the log string and a log key and returns a log number. Log numbers should be used
when calling functions that alter the sequence contents, so SequenceObject can keep
track of what changes were made by which programs.
trim_left – trim a specified number of bases from the 5' end of the sequence. A log
number can also be provided.
trim_right – same for the 3' end.
mask_current – masks some region of current sequence, a log number can also be
provided.
mask – same as above, but position is in original sequence.
invalidate – marks sequence as invalid, a log should be provided.
get_entries_for_masking – returns an array with all logs associated with
masking operations.
get_entries_for_trimming – same for trimming operations.
get_entries_for_filtering – same for invalidation operations.
get_entries_for_key – returns all logs associated with a specific key.
get_program - returns a string with the parameters used for running a program
associated with a specific log number. It is used in report components, in particular in
the complete graphical report, to retrieve information about masking and invalidation.
fasta_header – returns a string that can be used as a FASTA header.
is_valid - checks if a sequence is valid.
bases_trimmed_right – returns the number of bases trimmed from the 3' end.
bases_trimmed_left - same for 5' end.

